
XLIII Simpozijum o novim tehnologijama u poštanskom i telekomunikacionom

saobraćaju – PosTel 2025, Beograd, 16-17. decembar 2025.

https://doi.org/10.37528/FTTE/9788673955056/POSTEL.2025.26

 NOVI SOFTVER ZA DISKRETNU STOHASTIČKU SIMULACIJU

Marko Đogatović, Vesna Radonjić Đogatović, Nikola Matijašević

Univerzitet u Beogradu - Saobraćajni fakultet,

m.djogatovic@sf.bg.ac.rs, v.radonjic@sf.bg.ac.rs, nikola.matijasevic@sf.bg.ac.rs

Rezime: Diskretna stohastička simulacija je metoda za modeliranje i analizu sistema kod

kojih se promene stanja odigravaju u diskretnim vremenskim trenucima. Koristi se

inženjerstvu, ekonomiji, saobraćaju i drugim oblastima za razumevanje složenih sistema,

smanjenje troškova i rizika, donošenje upravljačkih odluka i analizu performansi.

Grafički aplikativni softver mimSim Simulation Software (2024.11-2) je namenjen za

izradu i simulaciju modela diskretnih stohastičkih sistema. Kao simulacionu strategiju

softverski paket koristi raspoređivanje događaja uz efikasnu upotrebu generatorskih

funkcija. Simulacioni model se realizuje prevlačenjem blokova kojih ukupno ima 45.

Blokovi su podeljeni u tri grupe: blokovi modela, objekti i raspodele. Nakon izvršenja

simulacije softver generiše izveštaj koji se može sačuvati u odgovarajućem formatu.

Softverski paket je realizovan u programskom jeziku Python koji je istovremeno i interni

skript jezik. Ovaj softver predstavlja odlično sredstvo za edukaciju i upoznavanje

studenata sa različitim aspektima simulacije i već je našao primenu na osnovnim

studijama Saobraćajnog fakulteta Univeerziteta u Beogradu.

Ključne reči: diskretna stohastička simulacija, softverski paket, edukacioni softver,

Python

1. Uvod

Simulacija je skup tehnika, metoda i alata za razvoj simulacionog modela

realnog sistema i korišćenje tog modela u cilju opisivanja ponašanja sistema. Svrha

simulacije je da razvije simulacioni model i sprovede eksperimente nad simulacionim

modelom u cilju boljeg razumevanja realnog sistema [1]. Diskretna stohastička

simulacija (Discrete Event Simulation, DES) je metodologija modeliranja dinamičkih

sistema kod kojih se stanje menja u diskretnim, tačno određenim trenucima, tzv.

događajima. Događaj predstavlja incident koji menja stanje celokupnog sistema. Obzirom

da se promene stanja odigravaju samo kroz događaje, vremenski period između događaja

je moguće preskočiti što čini ovu metodologiju izuzetno efikasnom [1, 2].

 Diskretna stohastička simulacija je danas uspešno etabliran alat u inženjerstvu,

ekonomiji, saobraćaju [3], zdravstvu [4] i drugim oblastima za razumevanje složenih

sistema [5, 6], smanjenje troškova i rizika, donošenje upravljačkih odluka [7] i analizu

performansi. Diskretnu stohastičku simulaciju najčešće koriste veliki proizvodni [5, 6] i

- 250 -

logistički sistemi, dok je njena upotreba ograničena u malim i srednjim preduzećima.

Osnovni razlog za to su veliki troškovi licenci komercijalnih DES softvera, koji mogu da

iznose i po više hiljada dolara (tabela 1), uz stalne godišnje troškove održavanja. Izrazito

limitirajuće licence, kao i visoki troškovi obuke i cene rada na softveru su takođe

značajni faktori ograničenog korišćenja komercijalnog DES softvera [8].

Tabela 1. Cene komercijalnih licenci simulacionih alata

Naziv simulacionog alata Cena

Simul 8 $5499 - $8699

Simcad Pro $2495 - $4950 (godišnja licenca)

ExtendSim $4995

Arena Simulation Software ~$5000

AnyLogic $12390 - $18990

Matlab (sa SimEvents-om) €2345

 va finansijska barijera proteže se i na obrazovne institucije, ometajući

integraciju modeliranja i simulacije u akademske programe. Iako besplatni DES softveri i

DES softveri otvorenog koda predstavljaju alternativu koja ima veliki potencijal za

obrazovne institucije, oni ostaju nedovoljno iskorišćen resurs u ostalim sektorima.

Cilj rada je realizacija DES softvera koji bi mogao da se koristi u edukativne

svrhe i koji bi bio jednostavan za korišćenje, a istovremeno u pogledu izrade

simulacionih modela bio bi u što većoj meri u ravni sa postojećim komercijalnim DES

softverom. U tu svrhu je realizovan simulacioni softver mimSim. Naravno, ovo nije

jedini softver koji spada u domen besplatnog DES softvera i DES softvera otvorenog

koda. Ima ih više i većina su programske biblioteke, od kojih se po svojoj kompletnosti i

funkcionalnosti posebno izdvaja JaamSim.

Rad je organizovan na sledeći način. Nakon uvodnog dela, u u drugom poglavlju

dat je kratak opis softvera, njegove karakteristike i mogućnosti, da bi u trećem poglavlju

bila prikazana arhitektura sofvera i kao i neke od komponenti koje je sačinjavaju. Primer

koji ilustruje mogućnosti i daje ideju o njegovoj eventualnoj primeni je dat u poglavlju

četiri. U poslednjem poglavlju su data zaključna razmatranja i navedeni su dalji pravci

njegovog razvoja.

2. Opis softvera

Grafički aplikativni softver mimSim Simulation Software (2024.11-2) je

namenjen za izradu i simulaciju modela diskretnih stohastičkih sistema. Interni skript

jezik softvera je programski jezik Python, a softver je takođe razvijan u programskom

jeziku Python [9]. Radi se o višeplatformskom (cross-platform) aplikativnom softveru

koji je moguće na Linux i Windows operativnim sistemima.

Model se sastoji od blokova koji su međusobno povezani konekcijama.

Konekcija se uspostavlja između izlaznog i ulaznog porta dva bloka. Blok obavlja izvesne

operacije nad entitetima i objektima modela. Entiteti su dinamički objekti koji se u toku

izvršenja simulacije stvaraju i uništavaju i kreću kroz blokove modela. Statički objekti

(nazivaćemo ih samo objektima) stvaraju se na početku izvršenja simulacije i služe da

ograniče kretanje entiteta kroz model, prikupljaju statistike, generišu vremena u skladu sa

određenom raspodelom i izvršavaju određene operacije nad modelom. bjekti su grafički

prikazani u vidu blokova modela samo bez ulaznog i izlaznog porta. Pored blokova,

- 251 -

entiteta i objekata u modelu postoji još jedan jedinstveni objekat koji služi za planiranje

izvršenja simulacionog modela i nosi naziv eksperiment. Objekat eksperimenta nema

grafičku reprezentaciju u modelu već mu se indirektno pristupa putem forme grafičkog

interfejsa. Eksperimentom se postavljaju semena generatora slučajnih brojeva, broj

simulacionih replikacija, vremenski period trajanja simulacije, prelazni period,

inicijalizacioni i startni programski kod, kao i programski kod koji se izvršava po

završetku simulacije. Po izvršenju simulacionog modela rezultati simulacije se prikazuju

u izveštaju. Na slici 1 je dat prikaz grafičkog interfejsa sa učitanim modelom.

Slika 1. Prikaz glavnog prozora mimSim Simulation Software-a

Softver karakteriše, takozvani, drag & drop interfejs kojim se blokovi i objekti,

koji se nalaze na paleti (slika 1) prevlače na list modela. Nakon prevlačenja blokove i

objekte je moguće raspoređivati na listu modela po želji. Takođe, izborom ulaznog ili

izlaznog porta bloka uz prevlačenje moguće je povezati dva različita bloka. List modela

je beskonačne veličine i moguće ga je pomerati, uvećavati i umanjivati po želji. Blokove i

objekte modela je moguće odabirati, menjati im svojstva, brisati i kopirati. Osim

mogućnosti da imaju oba porta, blokovi mogu imati samo jedan ulazni port ili jedan

izlazni port. Na ulazni port moguće je povezati neograničeni broj konekcija, dok broj

mogućih konekcija na izlaznom portu zavisi od vrste bloka.

Realizovani softver poseduje većinu karakteristika zajedničkih za ostale DES

softvere u pogledu modeliranja :

 fleksibilno kreiranje entiteta u vremenu i zavisnosti od tipa entiteta,

 kreiranje atributa i dodeljivanje vrednosti atributu u zavisnosti od entiteta,

 postavljanje entiteta u red čekanja,

 zadržavanje entiteta,

 zauzimanje i oslobađanje resursa procesa,

 promena parametara modela u zavisnosti od izvršenja simulacije, entiteta u

modelu itd. i

 prilagođavanje logike upravljanja entitetima u modelu.

Gotovo da je nemoguće napraviti aplikativni simulacioni softver koji interno ne

koristi neki programski jezik. Različiti softveri koriste različite jezike od kojih su neka

rešenja jedinstvena za taj softver. Realizovani softver koristi Python iz nekoliko razloga.

Radi se o modernom jeziku koji ima čistu i relativno jednostavnu sintaksu, popularan je i

- 252 -

dobro dokumentovan sa mnoštvom biblioteka. Ekstenzija dokumenta modela je .sim.

Radi se o komprimovanoj (zip algoritmom) tekstualnoj datoteci modela koja je data u

vidu tabuliranog JSON formata. To znači da je moguće menjati sadržaj modela

programski ili ručno.

Imena blokova i objekata moraju da prate pravila za imenovanje identifikatora

Python jezika (promenljive, klase, ¸funkcije, itd.). Ime bloka mora da bude jedinstveno u

modelu. Takođe, softver vodi računa da ime bloka bude jedinstveno i da odgovara

pravilima za imenovanje identifikatora i neće dozvoliti unos imena bloka ukoliko ne

zadovoljava prethodna dva uslova. Isto tako prilikom ubacivanja novog bloka u model,

blok će biti ubačen sa jedinstvenim imenom. Blok je moguće preimenovati kasnije.

Izborom bloka u modelu otvara se forma svojstava objekta ili bloka. Radi se o

formi kroz koju je moguće promeniti vrednosti nekim svojstvima objekta ili bloka. Forma

je nemodalna što znači da je moguće istovremeno za više blokova otvoriti forme

svojstava. bjektima ili blokovima je moguće pristupiti i putem Python koda korišćenjem

promenljivih koje imaju isto ime kao i objekat ili blok u modelu. Neka svojstva je

moguće menjati i pristupiti im, dok je nekim svojstvima samo moguće pristupiti, a nije ih

moguće menjati.

3. Arhitektura softvera

Program koristi MVC (Model-View-Controller) softversku arhitekturu koja

razdvaja korisnički interfejs od programske logike, tačnije simulatora i simulacionog

modela [10]. View, grafički interfejs je realizovan u okviru ui paketa, dok je Model,

simulator i simulacioni model realizovan u okviru core paketa programa. Controller,

koji uspostavlja vezu između interfejsa i simulacionog modela je većim delom realizivan

u ui paketu (u modulu model_canvas). U programskom jeziku Python paket je

direktorijum koji sadrži jedan ili više modula (.py datoteka). Na slici 2 je prikazana MVC

arhitektura mimSim softvera.

Slika 2. Model-View-Controller arhitektura mimSim softvera

 bjekti, blokovi i konekcije putem koji se uspostavljaju veze između blokova se

iscrtavaju u objektu klase ModelCanvas (modul model_canvas). U tom objektu se nalaze

- 253 -

i reference na simulator i model. Svojstva blokova se unose i menjaju putem formi

vezanih za svaki pojedinačni blok u modelu.

3.1. Simulator

U softveru se kao mehanizam pomaka vremena koristi pomak vremena na

naredni događaj, dok se za simulacionu strategiju koristi strategija raspoređivanja

događaja. Strategija predstavlja algoritam po kome se izvršava simulacija.

Kod strategije raspoređivanja događaja, događaji se smeštaju u listu budućih

događaja (Future Event Chain, FEC) u kojoj se sortiraju u rastućem redosledu na osnovu

vremenskog trenutka odigravanja događaja i prioriteta događaja (slika 3). Uzima se prvi

događaj iz liste, vreme simulacionog časovnika se ažurira na vreme izvršenja događaja i

događaj se izvršava. Izvršenjem događaja dobija se naredni događaj koji se raspodeljuje u

FEC listu. Događaji u okviru strategije su realizovani korišćenjem generatorskih funkcija.

Generatorska funkcija je poseban vid funkcije koja vraća objekat iteratora. Za razliku od

obične funkcije koja koristi return službenu reč da vrati jednu vrednost i kompletira

izvršenje funkcije, generatorska funkcija koristi službenu reč yield da vrati više

vrednosti pauzirajući izršenje i čuvajući sopstveno stanje nakon svakog poziva funkcije

[11]. Lista budućih događaja je realizovana korišćenjem heap queue strukture podataka

koja je dvostruko povezana lista sa preraspodeljenim elementima unutar liste što

omogućava brzi pristup najmanjem ili najvećem elementu liste. Važno je napomenuti da

se u listu budućih događaja se smeštaju isključivo bezuslovni događaji [1, 2].

Slika 3. Blok dijagram strategije raspoređivanja događaja

Događaji u modelu mogu biti uslovni ili bezuslovni. Uslovni događaji čekaju da

se ispuni određeni uslov da bi se izvršili (da se oslobodi resurs, da se otvori barijera, itd.),

dok se bezuslovni događaji izvršavaju u vremenskom trenutku za koje je raspoređeno

njihovo izvršenje (dolazak entiteta u model, završetak zadržavanja entiteta u modelu).

 vi događaji se odigravaju u blokovima modela i uvek se odigravaju nad tekućim

- 254 -

entitetom. Tekući entitet je entitet koji se trenutno nalazi u bloku i nad kojim se događaj

odigrava.

Entiteti za koje nije moguće izvršiti uslovni događaj čekaju u redu čekanja. Red

čekanja se nalazi unutar svakog bloka, ali se koristi samo kod blokova koji nemaju

mogućnosti izvršenja uslovnog događaja (blok je blokiran). Situacije zbog kojih blok

može postati blokiran su: nemogućnost zauzimanja dela resursa usled zauzetosti resursa u

blokovima Server i Seize, nemogućnost daljeg kretanja entiteta ukoliko je barijera

zatvorena u bloku Barrier, nemogućnost ulaska u red čekanja zato što je red čekanja

ograničene dužine u bloku Queue itd. Uslovni događaji nad entitetom se odigravaju u

sekvenci sve dok neki od blokova kroz koje se kreće entitet ne postane blokiran ili uđe u

blok u kome se izvršava bezuslovni događaj. dnosno, enititet se kreće kroz model sve

dok su uslovi za izvršenje događaja zadovoljeni. Blok kod koga se završi prethodni

uslovni događaj i stvoreni su uslovi da se izvrši novi događaj poziva prethodni blok da

oslobodi entitet koji čeka na izvršenje uslovnog događaja. Kada je resurs u pitanju red

čekanja je isti za sve blokove koji su povezani na jedan resurs. Inače, blok Queue uslovno

propušta entitete i prikuplja statistike reda čekanja koji se inače nalazi ispred svakog

bloka. Blok Queue može da menja veličinu i disciplinu čekanja u redu.

Blokovi u kojima se odigravaju bezuslovni događaji su blokovi Source, Delay i

Server. U bloku Source se nakog pristizanja novog entiteta u model raspoređuje dolazak

narednog entiteta korišćenjem vremena između dolazaka. Po ulasku u blok Delay za

tekući entitet se raspoređuje događaj napuštanja bloka na osnovu vremena zadržavanja

entiteta u bloku. Na sličan način kao blok Delay, blok Server po zauzimanju resursa

raspoređuje događaj izlaska iz Servera, gde po izlasku entiteta oslobađa deo resursa koji

je zauzeo entitet.

 stali blokovi izvršavaju određene operacije nad entitetima, objektima ili

stanjima simulacionog modela. Blok Sink uklanja entitet iz modela, blok Change menja

atribute entiteta, blok Release oslobađa deo resursa, blok Branch usmerava entitet na

odgovarajući blok, itd.

3.2. Simulacioni model

Simulacioni model sadrži sve blokove i objekte u modelu. Blokovi su osnovni

gradivni elementi modela i kroz blokove se kreću dinamički objekti koje nazivamo

entitetima. Nazivaju se dinamičkim objektima iz razloga što se stalno u toku izvršenja

modela vrši njihovo stvaranje i uništavanje (uklanjanje iz modela) Entiteti sadrže samo

soptvene atribute i nemaju informaciju u kom se bloku se nalaze.

Blok je zadužen da primi entitet, obavi odgovarajuću operaciju nad njim i

prosledi entitet narednom bloku. Iz tog razloga blokovi sadrže reference na blok ili

blokove iz kojih entitet može u njih da uđe kao i reference na blok ili blokove u koje

entitet može da ode nakon izlaska iz bloka.

Kada entitet uđe u blok prvo se izvršavaju odgovarajuće operacije nad entitetom

da bi on nakon toga bio smešten u red čekanja narednog bloka. Nakon toga se proverava

zauzetost narednog bloka. Ukoliko blok nije zauzet oslobađa se entitet iz reda čekanja i

izvršavaju se operacije nad entitetom u narednom bloku.

Ukoliko je blok zauzet entiteti koji pristižu ostaju u redu čekanja. Da bi entitet

izašao iz reda čekanja blok u kome se on nalazi mora da pozove prethodni blok da

- 255 -

oslobodi entitet iz reda čekanja i prosledi ga na izvršavanje ogovarajućih operacija nad

entitetom u bloku.

4. Ilustrativni primer

Kao ilustrativni primer relaizovan je simulacioni model otpremnog skladišta u

kompaniji Coca-Cola HBC (CCHBC). Coca-Cola B ima automatsko postrojenje za

punjenje bezalkoholnih pića, a svi proizvodi su uskladišteni u centralnom skladištu. vo

skladište se koristi za transport robe ka kupcima i za razmenu robe između skladišta

kompanije. Prodaja velikih količina zahteva savršenu sinhronizaciju između službi koje

posluju u celoj organizaciji, a posebno saradnju i koordinaciju između službi u lancu

snabdevanja [12].

 edan od ključnih sektora u kompaniji je logistika, koja obuhvata distribuciju i

skladištenje. Da bi se roba isporučila na vreme, potrebno je napraviti dobar plan po kojem

će se roba za kupce pripremiti, utovariti i isporučiti. To nije jednostavan zadatak, s

obzirom na uslove koji moraju biti ispunjeni: sa jedne strane je značajno vreme isporuke i

stanje isporučene robe, a sa druge strane optimalno iskorišćenje kapaciteta kompanije i

smanjenje troškova. Otpremna služba planira proces isporuke robe i diktira skladištu

kojom brzinom će se vršiti utovar. Proces rada otpremnog skladišta je šematski prikazan

na dijagramu (slika 4) korišćenjem BPMN (Business Process Model and Notation)

notacije.

Slika 4.BPMN dijagram operacija otpremnog skladišta CCHBC

Na slici 5 je prikazan model otpremnog skladišta realizovan u mimSim softveru.

Broj raspoloživih utovarnih mesta na pretovarnom frontu iznosi 2 pri čemu po jedan

radnik radi na svakom utovarnom mestu.

Model se uglavnom sastoji od redova čekanja (Queue), servera (Server) i

blokova koji zauzimaju (Seize) ili oslobađaju (Release) resurs. Međutim, ono što je

- 256 -

sprecifično za ovaj model je korišćenje bloka Barrier (Nalog) koji blokira utovar kamiona

dok se ne dobije dozvola od strane šefa magacina. dobrenje se dobija otvaranjem bloka

Barrier od strane bloka Inspect. Takođe, moguće je primetiti postojanje bloka Delay

(Dummy) koji nema uneto vreme zadržavanja (vreme zadržavanja je 0 s). Kao što je već

rečeno entitet se u modelu kreće sve dok ne postane blokiran ili dok se ne prebaci na FEC

listu. Dummy blok ovde ima za cilja da prebaci entitet na FEC listu i da prekine njegovo

kretanje što omogućava drugim entitetima da se kreću kroz model. Tačnije, na ovaj način

entitetima koji se nalaze u redu ispred Naloga omogućava se da nastave dalje i pređu na

utovar. Moglo bi se reći da Dummy server u ovom slučaju ima funkciju sličnu blok

naredbi BUFFER u GPSS-u.

Slika 5. Simulacioni model otpremnog skladišta CocaCola HBC realizovan u mimSim

sofveru

Na slici 6 prikazan izveštaj iz delova (slika 6a i slika 6b) koji je generisan nakon

izvršenja simulacionog modela. Izveštaj prikazuje statistike blokova i objekata u modelu

dobijene u toku izvršenja modela.

Slika 6. Izveštaj dobijen nakon izvršenja simulacionog modela (prikazan iz delova)

a) b)

- 257 -

5. Zaključak

U radu je prikazan softver za diskretnu stohastičku simulaciju – mimSim

Simulation Software. Motivacija za njegovu realizaciju je želja autora da se razvije

softver koji bi bio konkurentan sa postojećim komercijalnim DES sofverima i koji bi

mogao da se koristi kao edukativni sofver. Iako već postoje neki besplatni DES softveri i

DES sofveri otvorenog koda oni često imaju specifičnu logiku izrade simulacionog

modela koja pomalo odudara od standardne (npr. integrišu animaciju sa izradom modela)

ili uvode neke ograničene, nedovoljno dokumentovane interne jezike što ograničava

njihovu praktičnu upotrebu. U radu je dat kratak opis sofvera, objašnjena je njegova

arhitektura i pojedine komponente i dat je primer koji ilustruje deo njegove

funkcionalnosti.

 va verzija mimSim sofvera predstavlja prvi korak u njegovom približavanju

postojećim komercijalnim alatima. Iako je u pogledu upotrebljivosti interfejsa za

kreiranje modela, blokovima i izveštajima mimSim veoma blizak nekim komercijalnim

alatima, on ipak ima izvesne nedostatke koje bi trebalo u kasnijim verzijama nadomestiti.

To se pre svega odnosi na mogućnosti animacije, dibagovanja i optimizacije modela, kao

i na analizu ulaznih podataka (fitovanje raspodela prema podaacima dobijenih

merenjem). Neke od ovih mogućnosti je relativno jednostavno uvesti (poput optimizacije

i analize ulaznih podataka), dok animacija (na kojoj se već radi) i dibagovanje zahtevaju

velike promene u kodu sofvera.

Na kraju, potrebno je istaći da se realizvani sofver uspešno koristi u nastavi na

osnovnim akademskim studijama Saobraćajnog fakulteta na predmetu Računarska

simulacija.

Literatura

[1] B. Radenković, M. Stanojević, A. Marković, Računarska simulacija. Beograd:

Univerzitet u Beogradu - Saobraćajni fakultet i Fakultet organizacionih nauka, 1999.

[2] B. K. Choi, D. Kang, Modeling and Simulation of Discrete Event Systems. John

Wiley & Sons, 2013.

[3] olmes M. and Arseneau L, “A Discrete Event Simulation Tool for onducting a

Fleet Mix Study,” in Proceedings of the 14th International Conference on Operations

Research and Enterprise Systems - Volume 1 : ICORES, 2025, pp. 207-214, ISBN

978-989-758-732-0, DOI: 10.5220/0013090100003893

[4] D. Vecillas Martin, C. Berruezo Fernández, A. M. Gento Municio, “Systematic

Review of Discrete Event Simulation in ealthcare and Statistics Distributions”,

Aplied Sciences, vol. 15, no. 4, article no. 1861, 2025, DOI:

doi.org/10.3390/app15041861

[5] S. Chen, B. Mulgrew, and P. M. Grant, “The Role of Digital Transformation in

Manufacturing: Discrete Event Simulation to Reshape Industrial Landscapes”,

Applied Sciences, vol. 15, no. 11, 2025. DOI: 10.3390/app15116140

[6] D. Qiao, Y. Wang, “A review of the application of discrete event simulation in
manufacturing”, Journal of Physics: Conference Series, vol. 1802, article no. 022066,

2021, DOI: 10.1088/1742-6596/1802/2/022066

[7] B. . Battissacco, W. Azzolini únior, . . dos Santos, A. L. Romano, “Discrete

event simulation-based digital twin: an approach focused on tactical, strategic, and

- 258 -

operational decisions”, Journal of Simulation, pp. 1-19, 2025, DOI:

10.1080/17477778.2025.2531045

[8] S. Lang,, T. Reggelin, M. Müller, A. Nahhas. “Open-source discrete-event simulation

software for applications in production and logistics: An alternative to commercial

tools”, Procedia Computer Science, vol. 180, pp. 978-987, 2021, DOI:

10.1016/j.procs.2021.01.349

[9] Python Software Foundation, "Python 3.13 Documentation," Python.org. Available:

https://docs.python.org/3.13/ (accessed: Nov. 11, 2025).

[10] D.-P. Pop, A. Altar, “Designing an MVC Model for Rapid Web Application

Development”, Procedia Computer Science, vol. 69, pp. 1172-1179, 2014, DOI:

10.1016/j.proeng.2014.03.106

[11] D. Mertz, "PEP 255 – Simple Generators," Python Enhancement Proposals,

Python.org, 2001. Available: https://peps.python.org/pep-0255/ (accessed: Nov. 11,

2025).

[12] M. Đogatović, M. Stanojević, B. Radenković, "SIM-PA: An open source-based

simulation language" in Proc. 13th Balkan Conf. Operational Research (BALCOR

13), Belgrade, Zlatibor, Serbia, 2013, pp. 650–659, ISBN: 978-86-7680-285-2

Abstract: Discrete stochastic simulation is a method for modeling and analyzing systems

where state changes occur at discrete points in time. It is used in engineering, economics,

transportation, and other fields to understand complex systems, reduce costs and risks,

support managerial decision-making, and analyze performance. Graphical application

software mimSim Simulation Software (2024.11-2) is a designed for building and

simulating models of discrete event systems. The software package uses an event-

scheduling strategy with the efficient use of generator functions. The simulation model is

built by dragging and dropping from a total of 45 blocks. The blocks are divided into

three groups: model blocks, objects, and distributions. After the simulation is executed,

the software generates a report that can be saved in an appropriate format. The software

package is implemented in the Python programming language, which also serves as its

internal scripting language. This software represents an excellent tool for educating and

introducing students to various aspects of simulation and has already been implemented

in undergraduate studies at the University of Belgrade - Faculty of Transport and Traffic

Engineering.

Keywords: Discrete Event Simulation, software package, educational software, Python

A NEW SOFTWARE FOR DISCRETE EVENT SIMULATION

Marko Đogatović, Vesna Radonjić Đogatović, Nikola Matijašević

