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Rezime: Upotreba mašinskog učenja za predikciju snage signala i propagacionih 

gubitaka u okviru bežičnih komunikacionih sistema je sve češća. Brojna istraživanja 

pokazuju da modeli mašinskog učenja omogućavaju znatno veću preciznost u poređenju 

sa klasičnim emprijskim propagacionim modelima. U okviru ovog rada izvršen je veći 

broj merenja različitih parametara u okviru LTE mreže, na dve trase sa sličnom 

topologijom terena i stepenom urbanosti. Rezultati merenja su iskorišćeni za obučavanje 

različitih regresionih modela mašinskog učenja radi predikcije snage signala na prijemu. 

Skup podataka koji je korišćen za predikciju sadrži samo 5 atributa. Rezultati najboljeg 

modela ukazuju na to da se izmerene vrednosti sa jedne lokacije mogu iskoristiti za 

predikciju snage signala u LTE mrežama na drugoj, sličnoj, lokaciji. 

 

Ključne reči: LTE, RSSI, propagacioni gubici, mašinsko učenje, predikcija 
 

1. Uvod 

 
Mobilni operatori, regulatorna tela i agencije sprovode merenja snage signala na 

terenu radi ispitivanja performansi mreže. Dostupnost podataka ove vrste predstavlja 
ograničavajući faktor za istaživanja. Poslednjih godina razvijen je značajan broj 
aplikacija koje omogućavaju merenja na terenu pomoću pametnih telefona. Ranije je za 
merenje bila potrebna specijalizovana oprema, pri čemu je fizička postavka opreme 
ograničavala metodologiju istraživanja. Upotrebom aplikacija omogućeno je kreiranje big 
data skupova podataka sa različitim performansama mobilne mreže. 

Merenja na otvorenom se obično sprovode iz vozila (drive test) ili pešice (walk 
test). Istraživači se češće odlučuju za pristup koji obuhvata merenja iz vozila, obično 
automobila, ali i iz drugih prevoznih sredstava. Odabir trase i metodologija merenja 
predstavlja prvi korak u okviru istraživanja. U okviru ovog istraživanja merenja su vršena 
pešice na dve slične lokacije u urbanom okruženju. Na svakoj lokaciji urađeno je po 10 
merenja, zbog kraćih trasa i niže GPS tačnosti. Za predikciju snage signala na prijemu 
koristi se 5 atributa. To su rastojanje između predajnika i prijemnika, razlika visine 
između predajnika i prijemnika, azimut i ugao elevacije između predajnika i prijemnika, 
kao i frekvencija. Navedene promenljive predstavljaju kombinaciju promenljivih koje se 
koriste u okviru empirijskih i deterministričkih propagacionih modela. Parametri 
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rastojanje i relativna visina između predajnika i prijemnika odgovaraju emprijskim 
modelima, dok azimut i elevacija spadaju u parametre koji se koriste u okviru 
determinističkim modela. Ugaona geometrija se sve češće koristi u okviru bezičnih 
komunikacinih sistema. Upotreba azimuta i elevacije naručito je izražena prilikom 
pozicioniranja u okviru WiFi mreže. Uzimajući u obzir značaj sektorisanja i 
beamforming-a u okviru 5G mreža upotreba azimuta i elevacije je sve češća prilikom 
procene propagacionih gubitaka u okviru mobilne mreže. Upotrebom navedenih 
parametara eleminiše se potreba za korišćenjem dodatnih izvora podataka. Svi parametri 
su poznati i dostupni mobilnim operatorima. Priprema podataka je jednostavna, a male 
dimenzije skupa podataka skraćuju vreme koje je potrebno za izvršenje modela i čine 
model pogodnim za testiranje. 

U većini istraživanja prilikom predikcije koristi se jedan skup podataka koji 
sadrži objedinjene rezultate svih merenja. Deo podataka koristi se za treniranje modela, 
dok se drugi deo podataka koristi za testiranje modela. Ono što je specifično za ovo 
istraživanje je korišćenje dva zasebna skupa podataka za testiranje i treniranje modela. 
Rezultati merenja sa jedne trase korišćeni su za treniranje modela, dok su rezultati 
merenja sa druge trase korišćeni za testiranje modela. Cilj istraživanja je da se utvrdi da li 
se rezultati merenja sa jedne lokacije mogu iskoristiti za predikciju snage signala u LTE 
mrežama, na drugoj lokaciji sa sličnom topologijom terena i stepenom urbanosti. 

Rad je struktuiran u pet poglavlja. Posle uvodnog dela, dat je pregled literature 
koji obuhvata relevatne radove iz razmatrane oblasti. U trećoj sekciji opisane su sve faze 
istraživanja. Rezultati prediktivne analize prikazani su u sekciji četiri. Na kraju rada, 
sumirani su rezultati istraživanja 

 

2. Pregled literature 

 
Jedna grupa radova, u koju spadaju radovi [1-3], fokusira se isključivo na 

merenje i poređenje mrežnih performansi, poput brzine prenosa podataka, različitih 
mobilnih operatora. Druga grupa radova, [4-11], obuhvata rezultate merenja koji se 
koriste za predikciju snage signala na prijemu i/ili propagacionih gubitaka. Pojedini 
radovi, poput [4], koriste tradicionalne empirijske propagacione modele, dok sve veći 
broj radova [5-11] za predikciju koristi mašinsko učenje. Prilikom predikcije koriste se 
različiti pristupi, uključujući regresione i klasifikacione modele i neuronske mreže.  

Sa aspekta metodologije merenja, pregledom literature uočena su dva pristupa. 
Prvi pristup obuhvata veći broj merenja na istoj trasi. U radu [4] merenja su vršena na 
istoj trasi dva puta dnevno, tokom vremenskog perioda od čak 6 meseci. U okviru drugog 
pristupa izbegava se ponavljanje merenja na istoj trasi. Autori u [1] naglašavaju da je 
trasa odabrana tako da se minimizuje broj ponovljenih merenja. Prilikom odabire trase 
autori se takođe odlučuju za dva pristupa koji podrazumevaju merenja u jednoj zoni sa 
sličnom topologijom terena i stepenom urbanosti, odnosno za merenja u različitim 
zonama koje obično ubuhvataju urbano, suburbano i ruralno okruženje. 

Takođe, pregledom literature uočen je širok spektar različitih parametara koji se 
koriste za predikciju. Pojedini ulazni atributi, poput rastojanja između predajnika i 
prijemnika, su zajednički u većini istraživanja, dok se ostali atributi koji se koriste za 
predikciju međusobno razlikuju. Sve veći broj modela prilikom predikcije koristi podatke 
o topologiji terena koji obično podrazumevaju korišćenje različitih izvora prilikom 
prikupljanja podataka, što rezultuje zahtevnijom pripremom podataka. U radu [5] pored 
rastojanja i relativne visine između predajnika i prijemnika, kao ulazni atributi koriste se i 
parametri koje se odnose na relativnu visinu terena i prepreka, odnosno zgrada. Takođe, 
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za svaku instancu merenja radi se provera da li postoji linija optičke vidljivosti između 
predajnika i prijemnika. Za predikciju propagacionih gubitaka koriste se različiti 
regresioni i klasifikacioni modeli. Slični ulazni parametri, bez provere linije optičke 
vidljivosti, koriste se i u [7] pri čemu se autori fokusiraju na optimizaciju hiperparametara 
različitih modela primenom neuronskih mreža. U slučaju radova [5] i [7] neophodno je 
korišćenje dodatnih izvora podataka radi pribavljanja dodatnih informacija o okruženju. 
Ovakav pristup produžava proces pripreme podataka i podrazumeva korišćenje novih 
ulaznih podataka svaki put kada se vrši testiranje modela, što bi naročito došlo do 
izražaja prilikom testiranja različitih položaja baznih stanica. Provera linije optičke 
vidljivosti vrši se i u okviru rada [8]. U radu [6] autori za procenu parametara okruženja 
koriste satelitske slike i duboke neuronske mreže kako bi numerički odredili različite 
karakteristike okruženja. Na ovaj način dobijaju se detaljne informacije o okruženja koje 
nije potrebno pribavljati svaki put prilikom testiranja različitih polažaja baznih stanica. 
Prilikom predikcije u [6] koriste se tri različite mreže, što značajno uvećava 
kompleksnost sistema. Pri tome, druga mreža koja je zadužena za obradu satelitskih slika, 
za svaku instancu merenja formira podmatricu dimenzija 256x256. Novi alat za procenu 
pokrivenosti koji se bazira na upotrebi Random Forest algoritma za predikciju snage 
signala na prijemu, predložen je u [9]. Pored rastojanja, azimuta i elevacije, prilikom 
predikcije koriste se i drugi parametri, koji uključuju tip okruženja i liniju optičke 
vidljivosti. Autori u [10] za predikciju snage signala koriste još veći broj ulaznih 
parametara koji pored prosečne visine prepreka uključuju i visinu i udaljenost od najviše 
prepreke. Sa druge strane, autori u [11] za predikciju propagacionih gubitaka koriste 
isključivo 4 promenljive koje uključuju frekvenciju, rastojanje između predajnika i 
prijemnika, visinu predajne i prijemne antene, ukazujući na značaj smanjenja broja 
promenljivih koje se koriste za predikciju. Promenljive koje su odabrane za predikciju u 
radu [11] odgovaraju promenljivima koje se koriste u okviru klasičnih emprijskih 
propagacionih modela, dok promenljive u radovima [5-10] više odgovaraju 
deterministričkim modelima kod kojih se u obzir uzima topologija terena. 
 

3. Metodologija 
 

U okviru ovog rada vrši se predikcija snage signala na prijemu u okviru LTE 
mreže. Prva faza istraživanja obuhvata merenja i pripremu podataka za proces mašinskog 
učenja. Treniranje i testiranje različitih regresionih modela mašinskog učenja najpre je 
sprovedeno na jednom skupu podataka, radi poređenja performansi sa modelima u okviru 
drugih istraživanja. Nakon podešavanja hiperparametara različitih modela, model sa 
najboljim performansama iskorišćen je za predikciju RSSI (Received Signal Strength 
Indicator) pri čemu su za treniranje i testiranje korišćena dva zasebna skupa podataka. 

 

3.1. Merenje i priprema podataka 
 
Merenja su izvršena na 2 trase dužine 644 m (Trasa 1) i 521 m (Trasa 2). Trase 

su odabrane tako da je topologija terena i stepen urbanosti sličan, kao što se može videti 
na Slici 1.  
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Slika 1. Mape sa prikazom trasa merenja (Trasa 1 i Trasa 2) 

 
Na svakoj trasi urađeno je 10 merenja. Trase su odabrane tako da prilikom 

merenja nema prelaska ulica i dodatnih zadržavanja. Brzina kretanja prijemnika tokom 
merenja je približno konstantna i iznosi 2.34 km/h za Trasu 1, odnosno 2.39 km/h za 
Trasu 2. Na Trasi 1 detektovan je signal sa 9 različitih baznih stanica, dok je na Trasi 2 
detektovan signal sa 10 baznih stanica. Na Slici 2 dat je grafički prikaz mape sa 
naznačenim trasama i lokacijama baznih stanica. 

 

 
Slika 2. Mapa sa prikazom lokacija baznih stanica 

 
U okviru ovog rada za merenje korišćena je G Net Track aplikacija, koja je 

korišćena i za prikupljanje podataka u radovima [1-3]. G Net Track aplikacija omogućava 
merenje na otvorenom, kao i merenja u zatvorenom prostoru. Pored podataka o kvalitetu 
signala i brzini prenosa aplikacija omogućava i prikupljanje lokacijskih informacija. Za 
potrebe rada izdvojeni su sledeći atributi: 

 Timestamp – datum i vreme kada je izvršeno merenje; 

 Operator – kod operatora; 

 LAC (Location Area Code) – kod lokalne oblasti; 

 CellID – ID bazne stanice; 

 NetworkTech – mrežna tehnologija; 

 Longitude i Latitude – koordinate prijemnika (geografska dužina i širina) u 
stepenima; 

 Height – nadmorska visina na kojoj se nalazi prijemnik u m; 

 Ground – visina iznad zemlje na kojoj se nalazi prijemnik u m; 

 LongitudeBS i LatitudeBS – koordinate bazne stanice (geografska dužina i 
širina) u stepenima; 
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 GPSAcc – GPS tačnost u m; 

 RSSI (Received Signal Strength Indicator) – nivo snage signala na prijemu u 
dBm; 

 Speed – brzina kretanja prijemnika u km/h i 

 Frequency – frekvencija na kojoj se emituje signal u MHz. 
Prilikom merenja detektovan je signal isključivo u okviru LTE mreže, pri čemu 

je mobilni operator A1 Srbija. Parametri Operator, LAC i CellID se koriste za 
identifikaciju bazne stanice. Pored informacija o lokaciji prijemnika dostupne su i 
lokacijske informacije o baznim stanicama. Prilikom pripreme podataka uočena je 
neusaglašenost između koordinata istih baznih stanica. Uočena odstupanja koordinata 
posledica su promene tačnosti pozicioniranja prilikom merenja. Ovo su podaci koji su 
poznati mobilnim operatorima, ali ne i široj javnosti. Pojedina istraživanja, poput [12] 
ukazuju na ovaj problem i koriste crowdsourced skupove podataka radi određivanja 
lokacija baznih stanica. U okviru ovog rada za određivanje tačnih koordinata baznih 
stanica korišćena je OpenCell aplikacija koja sadrži najveći otvoreni skup podataka o 
baznim stanicama. Na osnovu prikupljenih podataka izvršena je korekcija koordinata 
baznih stanica. Takođe, registar evidentiranih radio-stanica u javnoj mobilnoj 
elektronskoj komunikacionoj mreži ne sadrži podatak o visini bazne stanice iznad zemlje. 
Visina bazne stanice iznad zemlje je procenjena pomoću Google Earth Pro mapa. Skup 
podataka je dopunjen sa atributom GroundBS koji odgovara visini bazne stanice iznad 
zemlje, kao i atributom HeightBS koji predstavlja nadmorsku visinu. 

Kako su merenja sprovedena u urbanoj sredini, propagacija signala po 
višestrukim putanjama rezultuje smanjenom tačnošću pozicioniranja. Na pojedinim 
delovima trasa, poput ulice Bulevar kralja Aleksandra, ovaj efekat je izraženiji. Za svaku 
instancu merenja izvršena je provera koordinata prijemnika, kao i korekcija koordinata po 
potrebi radi smanjenja greške pozicioniranja. Pojedine instance kod kojih je zabeležena 
izuzetno niska GPS preciznost pozicioniranja su uklonjene iz skupa podataka. Nakon 
pripreme podataka konačan broj instanci za Trasu 1 iznosi 455, odnosno 306 instanci za 
Trasu 2. 

Atributi koji su korišćeni za predikciju RSSI u okviru ovog rada su rastojanje, 
relativna visina, azimut i elevacija između bazne stanice i prijemnika, kao i frekvencija. 
Za procenu rastojanja između bazne stanice i prijemnika korišćena je Heversine formula 
koja je definisana izrazom (1) 

                  
     

 
                  

  
     

 
             (1) 

gde su: R – poluprečnik Zemlje, koji iznosi 6371000 m; φ1, λ1 – koordinate prijemnika 
(geografska širina i dužina) u stepenima; φ2, λ2 – koordinate bazne stanice (geografska 
širina i dužina) u stepenima. 

Relativna visina između bazne stanice i prijemnika predstavlja razliku između 
visine bazne stanice i prijemnika i određuje se pomoću formule (2) 

                                                         (2) 

Prilikom određivanja relativne visine u obzir se uzima nadmorsku visinu i visinu 
predajnika, odnosno prijemnika, iznad zemlje. Za određivanje azimuta koji predstavlja 
vertikalno ugaono rastojanje između prijemnika i bazne stanice korišćena je formula (3) 

                  ,                                (3) 
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gde je a definisano izrazom (4) 

       
     

 
                  

  
     

 
                           (4) 

Elevacija, odnosno horizontalno ugaono rastojanje između bazne stanice i 
prijemnika određena je pomoću formule (5): 

       
     

 
                                                    (5) 

gde h1 i h2 odgovaraju visini prijemnika, odnosno visini bazne stanice iznad zemlje, 
uvećanim za nadmorsku visinu. 
 

3.2. Istraživačka analiza kreiranih skupova podataka 
 

Merenja su sprovedena različitim danima u različito vreme. Takođe, merenja su 
započeta u različitim početnim tačkama sa promenom smera kretanja. Cilj većeg broja 
merenja je da se utvrdi da li postoje značajna odstupanja RSSI na istim lokacijama tokom 
različitih merenja. Na Slici 3 prikazani su rezultati tri merenja na Trasi 1. Sa Slike 3 
mogu se uočiti blaga odstupanja RSSI tokom različitih merenja. Niža odstupanja RSSI su 
očekivana i mogu biti posledica različitih faktora poput saobraćaja, broja korisnika i 
njihovih aktivnosti, vremenskih uslova i sl. Takođe, sa Slike 3 se može uočiti da nema 
značajnih varijacija RSSI. U ulicama Pop Stojanova i Bulevar kralja Aleksandra 
zabeležen je najviši nivo snage signala na prijemu tokom svih merenja. U 
Kajmačalanskoj ulici dolazi do blažeg pada RSSI, dok je najznačajniji pad RSSI uvek 
zabeležen u ulici Branka Krsmanovića. 

 

   
Slika 3. Mapa Trase 1 sa prikazom snimljenog RSSI tokom tri merenja 

 
U slučaju Trase 2, takođe nisu uočene značajne varijacije RSSI tokom različitih 

merenja, kao što je i prikazano na Slici 4. Zabeležene vrednosti RSSI na Trasi 2, su 
značajno niže u odnosu na Trasu 1. Prilikom odabira trasa nije očekivano ovoliko 
odstupanje izmerenih RSSI vrednosti, obzirom na to da je rastojanje između trasa malo i 
da je okruženje u kojem se odvija propagacija slično po stepenu urbanosti i vegetacije. 
Na Trasi 1 zabeležene vrednosti RSSI nalaze se u opsegu od -103 dBm do -53 dBm, dok 
se zabeležene vrednosti RSSI na Trasi 2 nalaze u opsegu od -111 do -73 dBm. 

Na Slici 5 dat je grafički prikaz raspodele zabeleženih vrednosti RSSI na Trasi 1 
i Trasi 2 u vidu histograma. U Tabeli 1 dat je pregled minimalnih, maksimalnih i srednjih 
vrednosti atributa koji su korišćeni za predikciju RSSI. Pored velikog odstupanja RSSI na 
Trasi 1 i Trasi 2 zabeležena je i velika razlika između ulaznih atributa koji se koriste za 
predikciju. 

 



- 173 - 

 

   
Slika 4. Mapa Trase 2 sa prikazom snimljenog RSSI tokom tri merenja 

 

  
Slika 5. Raspodela snage signala na prijemu za Trasu 1 i Trasu 2 

 
Tabela 1. Pregled minimalne, maksimalne i srednje vrednosti ulaznih atributa 

 Trasa 1 Trasa 2 

atribut min 
vrednost 

max 
vrednost 

srednja 
vrednost 

min 
vrednost 

max 
vrednost 

srednja 
vrednost 

rastojanje [m] 8.14 364.25 168.94 9.58 439.54 246.86 

azimut [˚] -157.38 180.00 14.76 -137.45 152.24 48.07 

elevacija[˚] -0.02 66.19 8.96 0.29 39.07 5.62 

relativna visina[m] -0.11 24.56 13.50 1.13 29.75 16.83 

frekvencija [MHz] 1755.10 1957.50 1820.00 1755.10 1957.50 1800.50 

 
Iz Tabele 1 može se videti da su u slučaju Trase 2 zabeležena veća rastojanja 

između predajnika i prijemnika. Ovo je jedan od razloga zbog koga su izmerene vrednosti 
RSSI na Trasi 2 znatno niže u poređenju sa izmerenim vrednostima na Trasi 1. Atribut 
azimut uzima vrednosti od 0 do ±180˚ u zavisnosti od položaja prijemnika u odnosu na 
baznu stanicu. Na osnovu Tabele 1 i Slike 6, na kojoj je prikazana raspodela ulaznih 
atributa, može se uočiti da se polažaj prijemnika u odnosu na baznu stanicu značajno 
razlikuje u slučaju Trase 1 i Trase 2. U slučaju elevacije nisu uočena velika odstupanja 
između Trase 1 i Trase 2. Elevacija se nalazi u opsegu između 0 i 90˚. Negativne 
vrednosti za elevaciju zabeležene su u slučaju Trase 1 kod nekoliko instanci, u slučaju 
kada je visina predajnika niža od visine prijemnika. U skladu sa elevacijom nisu 
zabeležene ni drastične razlike u slučaju relativne visine između Trase 1 i Trase 2. 
Potrebno je naglasiti da je u slučaju Trase 1 zabeležen veći broj instanci sa višim 
vrednostima relativne visine, što takođe može biti razlog zbog koga je nivo RSSI viši na 
Trasi 1. 
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Slika 6. Raspodela rastojanja, azimuta, elevacije i relativne visine za Trasu 1 i Trasu 2 

 
Frekvencija emitovanja se nalazi u opsegu od 1755.1 do 1957.5 MHz u slučaju 

obe trase. Srednja vrednost frekvencije za Trasu 1 iznosi 1820 MHz, odnosno 1800.5 
MHz za Trasu 2. 

 

4. Rezultati i analiza rezultata 

 
Za predikciju RSSI u okviru ovog rada korišćeni su regresioni modeli 

mašinskog učenja. Testirano je nekoliko regresionih modela uključujući Decision Tree, 
Random Forest, Gradient Boosting i SVR (Support Vector Regression) model. Navedeni 
modeli se često koriste za predikciju snage signala na prijemu i u okviru drugih radova. 
Takođe, ovo su modeli koji su korišćeni i u okviru prethodnih istraživanja [13] prilikom 
predikcije RSSI kod digitalne televizije u zavisnosti od vremenskih uslova. 

Modeli su prvo trenirani i testirani na skupu podataka koji obuhvata merenja 
isključivo na Trasi 1. Kao što je naglašeno u Sekciji 1, ovakav način obučavanja modela 
se primenjuje kod većine radova. Odnos podataka za testiranje i treniranje modela se 
razlikuje. Tipično se veći procenat podataka koristi za treniranje modela, a u pojedinim 
istraživanjima, poput [5], ovaj procenat je niži i iznosi 50%. Za treniranje modela, u 
okviru ovog istraživanja, korišćeno je 80% instanci, dok je preostalih 20% korišćeno za 
testiranje modela. Za ocenu performansi obučenih modela korišena je RMSE (Root Mean 
Squared Error), MAE (Mean Absolute Error) i MAPE (Mean Absolute Percentage 
Error). RMSE, MAE i MAPE predstavljaju standardnu metriku za ocenu performansi 
regresionih modela. RMSE predstavlja razliku između izmerene RSSI vrednosti, yi, i 

vrednosti dobijene predikcijom,    . RMSE se određuje pomoću formule (6) 

      
 

 
         

  
                                                      (6) 
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MAE predstavlja srednju apsolutnu razliku između tačne vrednosti i vrednosti 
dobijene predikcijom. Za proračum MAE korišćena je jednačina (7) 

    
 

 
         

   
                                               (7) 

Apsolutna razlika između tačne vrednosti i vrednosti dobijene predikcijom može 
se izraziti u procentima pomoću jednačine (8) 

     
 

 
 

      

  
      

                                               (8) 

Primenom tehnike RandomizedSearchCV izvršeno je podešavanje 
hiperparametara modela. Na Slici 7 dat je grafički prikaz apsolutne greške između 
izmerene RSSI vrednosti i vrednosti dobijene predikcijom za primenjene modele. Zbog 
većeg broja instanci grafik je podeljen na dva dela. Sa Slike 7 se može uočiti da je 
najveća vrednost apsolutne greške zabeležena kod Decision Tree i SVR modela. Sa druge 
strane primenom Random Forest i Gradient Boosting modela apsolutna greška se 
smanjuje. Rezultati validacije različitih modela prikazani su u Tabeli 2. Najbolji rezultati 
predikcije, sa najnižom vrednošću RMSE od 4.533 dBm dobijeni su primenom Random 
Forest modela. 

 

 

 
Slika 7. Apsolutna greška između izmerene RSSI vrednosti i vrednosti dobijene 

predikcijom za primenjene modele na Trase 1 
 
Tabela 2. Ocena performansi primenjenog modela 

Model mašinskog učenja RMSE [dBm] MAE [dBm] MAPE [%] 

Decision Tree 6.696 4.322 5.40 

Random Forest 4.533 3.428 4.30 

Gradient Boosting 4.934 3.725 4.66 

SVR 5.642 4.021 5.01 

 
Random Forest model izdvojen je kao model sa najboljim performansama i 

mogućnošću detektovanja ekstremnih padova snage signala na prijemu i u slučaju 
istraživanja [13]. U okviru rada [5] prilikom predikcije propagacionih gubitaka primenom 
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regresionih modela RMSE najboljeg modela iznosi 7.3 dB. Autori u [5] naglašavaju da 
dobijeni rezultati zadovoljavajući za praktičnu primenu. Potrebno je naglasiti da se u radu 
[5] za svaku instancu merenja vrši provera linije optičke vidljivosti između predajnika i 
prijemnika. U radu [6] dobijene vrednosti RMSE i MAE iznose 4.32 dB i 3.45 dB 
prilikom procene propagacionih gubitaka. Kao što je navedeno u Sekciji 2, u istraživanju 
[6] autori koriste satelitske slike i tri različite mreže prilikom predikcije čime se povećava 
kompleksnost sistema. Autori u [11], koji za predikciju koriste sličan skup ulaznih 
atributa prijavljuju vrednosti za RMSE i MAE od 8.52 dB i 6.48 dB. 

Propagacioni gubici definišu se kao razlika snage na predaji i prijemu. Kako nije 
poznata snaga signala na predaji u okviru ovog rada izvršena je isključivo predikcija 
snage signala na prijemu. Uzimajući u obzir da je snaga signala na predaji konstantna, 
možemo smatrati da su propagacioni gubici direktno proporcianalni promeni RSSI. 
Dobijene vrednosti za RMSE, MAE i MAPE od 4.533 dBm, 3.428 dBm i 4.30% 
respektivno, ukazuju na visoku tačnost predikcije. Model je precizniji u poređenju sa 
rezultatima istraživanja [5] i [11] za čak 37.97%, odnosno 46.88%. Sa druge strane, u 
poređenju sa istraživanjem [6] dobijeni rezultati su lošiji za samo 4.32%.  

Nakon obučavanja modela korišćenjem podataka isključivo sa Trase 1 i 
poređenjem sa ostalim modelima izvršeno je i obučavanje modela korišćenjem podataka 
sa Trase 2. Ovakav pristup testiranja modela uočen je jedino kod istraživanja [6], gde je 
manji deo trase, dužine 110 m iskorišćen isključivo za testitanje modela.  Sve instance 
merenja sa Trase 1 korišćene su za obučavanje modela, dok je 20% instanci sa Trase 2 
korišćeno za testiranje modela. Izvršeno je obučavanje Random Forest modela kod koga 
su u slučaju Trase 1 zabeleženi najbolji rezultati. U ovom slučaju dolazi do značajnog 
smanjenje tačnosti predikcije RSSI. RMSE iznosi čak 12.528 dBm, dok MAPE iznosi 
10.95 %. Na Slici 8 dat je uporedni grafički prikaz izmerenih RSSI vrednosti i RSSI 
vrednosti koje su dobijene predikcijom na Trasi 2. 

 

 
Slika 8. Izmerene RSSI vrednosti i RSSI vrednosti dobijene predikcijom na Trase 2 

 
Prema [9] prihvatljive vrednosti RMSE za ruralnu i suburbanu sredinu nalaze se 

u opsegu od 10 do 15 dB, dok u slučaju urbane sredine RMSE treba da bude niži od 7 dB. 
Dobijeni rezultati u okviru ovog rada zadovoljavaju kriterijum za ruralnu i suburbanu 
sredinu, ali ne i za urbanu sredinu. Sa druge strane, autori u [4] porede izmerene 
vrednosti propagacionih gubitaka u okviru LTE mreže za propagacionim gubicima 
određenim pomoću klasičnih empirijskih modela, uključujući EGLI, ECC, COST 231 i 
ERICSSON propagacioni model. U slučaju EGLI, ECC i COST 231 modela dobijene 
vrednosti standardne devijacije iznose čak 29.24, 19.13 i 19.23 dB, dok je primenom 
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ERICSSON modela dobijena najniža vrednost standardne devijacije od 10.13 dB. U 
poređenju sa rezultatima istraživanja [4] kreirani model i pored smanjene tačnosti 
predikcije na Trasi 2 omogućava veću preciznost u poređenju sa većinom klasičnih 
empirijskih modela. U okviru studije [9] izvršeno je poređenje novog RF modela sa 
klasičnim empirijskim propagacionim modelima uključujući COST 231, ECC-33, ITM i 
SUI model. Na većini lokacija u urbanoj sredini zabeležene vrednosti RMSE klasičnih 
emprijskih propagacionih modela su znatno više od 15 dB. Takođe, RMSE novog RF 
modela je niži od 7 dB samo u slučaju jedne lokacije. U slučaju ostalih lokacija RMSE se 
nalazi u opsegu između 10 i 20 dB. 

Uzimajući u obzir veliko odstupanje izmerenih vrednosti RSSI na Trasi 1 i Trasi 
2, kao i razliku između vrednosti i raspodele ulaznih atributa smanjenje tačnosti 
predikcije je očekivano. Potrebno je proširiti skup podataka za treniranje modela, 
merenjem na znatno većem broju lokacija, kako bi se proširio opseg izmerenih RSSI 
vrednosti, kao i opseg vrednosti ulaznih atributa koji se koriste za predikciju. Očekuje se 
da bi proširenje skupa podataka za treniranje modela dovelo do pada RMSE i MAPE i u 
slučaju testiranja na različitim trasama. 
 

5. Zaključak 
 
Prilikom predikcije snage signala u okviru ovog istraživanja korišćen je 

drugačiji pristup obučavanja modela mašinskog učenja koji obuhvata korišćenje zasebnih 
skupova podataka, sa različitih lokacija, za treniranje i testiranje modela. Ovakav način 
predikcije bi omogućio znatno efikasnije planiranje infrastrukture mreže i smanjio 
potrebu za terenskim merenjima. Mobilni operatori bi mogli da testiraju različite 
raspodele baznih stanica u cilju pronalaska optimalnog plana raspodele uz značajno 
smanjenje troškova.  

Rezultati ukazuju na veću tačnost predikcije u poređenju sa empirijskim 
propagacionim modelima, ali i sa drugim modelima mašinskog učenja koji su kreirani u 
okviru sličnih istraživanja. Osim toga, za predikciju snage signala korišćen je znatno 
manji broj ulaznih atributa koji ne zahtevaju kompleksne proračune i korišćenje dodatnih 
izvora podataka radi pribavljanja informacija o okruženju, što je značajno sa aspekta 
praktične primene modela. 
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Abstract: The application of machine learning to forecast signal strength and 
propagation loss in wireless communication systems is becoming more common. 
Numerous studies indicate that machine learning models provide significantly higher 
predictive accuracy than traditional empirical propagation models. This study involved 
comprehensive measurements of multiple LTE network features, conducted over two 
routes with similar topographical topography and urban density. The measurement 
results were utilized to train several machine learning regression models for predicting 
signal strength. There are only five attributes in the predictive dataset. The results of the 
best model indicate that the recorded data from one location may be utilized to predict 
the signal strength of LTE networks at another, similar location. 
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